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Abstract 
The mathematical theory of ranked-choice voting is reviewed, with particular 
focus on Condorcet, Plurality, and Borda Count methods. Maximizing the 
Borda Count score is shown to be equivalent to minimizing the weighted 
arithmetic mean across ranks. This leads to alternate Borda methods associated 
with different weighted means: geometric; harmonic; and root-mean-square. 
The notion of an ergodic voter population is introduced, together with a statis-
tical confidence interval approach to estimating requisite population size, 
which is essential to avoid small-population noise. Population size and voting 
method consistency are further examined via simulation where it is shown that 
principal voting methods, other than Plurality, converge for a sufficiently large, 
ergodic voter population. This again highlights pitfalls associated with small 
voter populations, in terms of both voting method consistency and elicitation of 
overall voter/social preference. 
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1. Introduction 

Ranked-choice voting occurs when each member of a voting population ranks k 
candidates from 1 to k in strict order, 1 best to k worst, where 3k ≥ . Candi-
dates can be politicians, proposals, or consumer products like automobiles or 
laundry detergents. The idea here is that a ranked permutation of candidates 
provides much more information about voter preference than a singleton choice, 
even though we are often interested in selecting a single winner. The objective of 
ranked-choice voting is to elicit an aggregate social choice ranking of candidates 
beyond a simple plurality (most first-place votes) and to designate the aggregate 
top-ranked winner utilizing all available information about voter preference. 
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Various voting methods, or social choice functions, have been proposed, 
going back to Eighteenth Century France with competing methods proposed by 
Borda and Condorcet. Both of these methods depend on an aggregated, ano-
nymous voter profile which summarizes counts of voters associated with various 
candidate rank permutations. Borda Count, and other positional scoring func-
tions, depend simply on rank counts for each candidate. The Borda Count score 
winner, in particular, has a number of commendable attributes, although it is 
considered suboptimal when compared to the Condorcet winner who beats all 
pairwise opponents, ignoring others. The Condorcet winner, although generally 
considered optimal, doesn’t always exist, although other robust pairwise me-
thods exist, the most comprehensive and complex being the Kemeny method. In 
our age of high-powered computation, algorithmic complexity is not really an 
issue, but understandability of a voting method remains an issue. Hence, Borda 
Count and other simple scoring methods have continuing allure. Moreover, it is 
useful to explore where Condorcet and Borda yield the same winner. 

Part I of Robinson and Ullman (2017) provides an excellent overview of 
ranked-choice voting, including all pairwise and positional voting rules and var-
ious social choice criteria to evaluate them; they also have a vast array of pedo-
logical problems, one of which we highlight later. Saari (2000) and Saari (2023) 
warn about pitfalls associated with all such voting methods and he champions 
Borda Count as retaining the most information about voter preference as well as 
being least impacted by paradoxical behaviors, including strategic manipulative 
voting, which is further examined in Mata-Perez et al. (2014).  

Heilman (2022) deduces, under certain technical conditions, that Borda Count 
is the stablest voting method in the face of randomly corrupted votes. Conitzer 
and Sandholm (2005) show that simple scoring rules, like Borda Count, corres-
pond to maximum likelihood estimators for certain voter noise models, unlike 
some competing pairwise methods. Young and Levenglick (1978) and Young 
(1995) support Kemeny as the natural embodiment of Condorcet’s approach. 
Crisman (2014) uses representation theory of the symmetry group of the per-
mutahedron to define an algebraic spectrum of voting rules connecting Borda to 
Kemeny. Other general overviews of ranked-choice voting are provided by 
Nurmi (2010) and Zhang (2020). 

Our focus is twofold. First, we reinterpret the classic Borda Count voting me-
thod and derive a family of alternative Borda methods that correspond to vari-
ous weighted rank means. Our purpose here is not to detract from Borda Count, 
but rather to reinforce it. Second, we address the issue of voter population com-
position and size to ensure statistical accuracy of results. Most textbook prob-
lems have very small voter populations by design, and they certainly highlight 
divergences among voting methods. However, these divergences tend to disap-
pear for larger populations that are at once ergodic and sizable. 

In the next section, we reinterpret Borda Count as the weighted arithmetic 
mean across ranks 1, ,k

 with minimum score the winner. This opens the 
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door to other weighted means like geometric, harmonic, root-mean-square, and 
indeed to an infinity of weighted power means. In section 3, we address the issue 
of voter population composition and size. We demonstrate that size alone does 
not ensure consistency across voting methods. Ergodicity is also required. Given 
ergodicity, we indicate how to ensure sufficient voter population size, assuming 
that is possible. In section 4, we provide an ergodic simulation which demon-
strates convergence of Condorcet and Borda variations for sufficiently large 
population size. In our simulation, only the Plurality method ultimately diverges 
from the others. Section 5 contains our summary and conclusions and the Ap-
pendix contains our R-scripts/functions for Condorcet, Plurality, and alternative 
Borda methods along with scripts for Problem 2.1 in Robinson & Ullman (2017) 
and our simulation. Throughout we ignore winner ties as being unlikely in the 
real world. 

2. Borda Variations 

We have 3k ≥  distinct candidates and a population of voters, each of whom 
ranks all k candidates in strict order, from 1 best to k worst. Hence, each voter’s 
ranking is a permutation of 1, ,k

 and assuming equal, anonymous voters, we 
may aggregate results into a voter profile with voter counts in the first column 
and specific candidate rank permutations in columns 2, , 1k +

. This is a 
transposed version of the usual textbook profile with candidates labeled by 
numbers rather than letters. 

Table 1 profiles the results of an election with 5 ranks and 11 total votes with 
only 5 of 120 = 5! possible rank permutations represented. Nevertheless, it is 
quite instructive. The first row indicates 4 votes associated with a permutation 
that puts candidate 1 in rank 1, candidate 3 in rank 2, candidate 4 in rank 3, 
and so on. Candidate 1 is the Plurality winner with 4 first-place (Rank 1) votes. 
Candidate 3 is the Condorcet winner who beats all other candidates in pair-
wise, head-to-head competition, i.e., 6:5 against each contender 1, 2, 4, 5. Posi-
tional methods like Borda Count (and Plurality) involve a k k×  count matrix 

ijC c =    where ijc  is the count of votes for candidate i in rank position j. 
 

Table 1. Candidate rank permutations and votes from Problem 2.1 in Robinson & Ullman 
(2017). 

 
Ranks 

Votes 1 2 3 4 5 

4 1 3 4 2 5 

3 2 5 4 3 1 

2 3 2 4 1 5 

1 4 2 5 3 1 

1 5 4 2 1 3 
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Borda Count involves weighted candidate scores ( )
1

k

i ij
j

s c k j
=

= −∑  and the  

candidate with maximum score is designated the winner. From Table 1, we 
compute scores 19, 27, 24, 25, 15 so candidate 2 is the designated Borda Count 
winner. Calculations for this problem are simple and straightforward but our 
R-scripts/functions automate the process for this and any other voter profile. 

Let n denote the total number of voters and define matrix P C n= . This ma-
trix is doubly stochastic (or doubly Markov, cf Cinlar (1975)) in that its rows and 
columns all sum to 1. If we replace ijc  with ijp  in the Borda scoring formula, 
the winner is the same. If we further replace k j−  by j in the scoring formula, 
the same winner emerges if we switch from maximum to minimum score.  

This revised (and simplified) scoring formula 
1

k

i ij
j

s p j
=

= ∑  is recognizable as the  

weighted arithmetic mean across ranks 1, ,k
 for weights 1, ,i ikp p . While 

this seems logical, we have no assurance that the voting population has in mind 
a linear scale for ranks. Consequently, it seems advisable to compute alternative 
weighted means to see if they designate the same winner; if so, the Borda case is 
bolstered. 

There is an infinity of weighted power means to consider; we highlight a few 
in the following Table 2. See Hong et al. (2007) for application of weighted 
power mean operators in fuzzy information retrieval. 

 
Table 2. Weighted mean variations on the Borda Count scoring formula. Refer to 
planetmath.org/weightedpowermean and en.wikipedia.org/wiki/Generalized_mean for 
general relationships among these weighted means. 

Weighted Mean Scoring Formula with Minimum Score Wins 

Arithmetic is  = 
1

k

i j
j

p j
=
∑  Same as Borda Count. 

Geometric is  = 
1

i j
k

p

j

j
=
∏  = ( )

1
exp ln

k

i j
j

p j
=

 
 
 
∑  

Harmonic is  = 
1

1/ /
k

i j
j

p j
=
∑  Same as Dowdall/Nauru. 

Root-Mean-Square 
(RMS) is  = 2

1

k

i j
j

p j
=
∑  

General Power 
is  = 

1/

1

a
k

a
i j

j
p j

=

 
 
 
∑  
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Referring to the general power mean formula, Arithmetic corresponds to a = 
1, Geometric corresponds to a = 0 (in the limit), Harmonic corresponds to a = 
−1, and RMS corresponds to a = 2. Referring back to the profile in Table 1, and 
utilizing the PROFILE2.1 function in the Appendix, Geometric and Harmonic 
yield the same winner as Arithmetic, candidate 2. RMS, on the other hand, yields 
candidate 4 as winner, yet another divergence. We next turn to the impact of 
voter population composition and size. 

3. Voter Population 

Referring back to the voting profile in Table 1, we note that adding N zeros to 
every element in the votes column changes absolutely nothing. Voter population 
size doesn’t matter if there are large swathes of voters who rank candidates in 
locked step, by virtue of either mania or intimidation. We need more to ensure 
that size matters and that it may cure lumps and divergences, as in inferential 
statistics. 

Definition. A voter population is ergodic if (1) individual voter rank-permu- 
tations are stochastically independent and identically distributed and (2) every 
voter rank-permutation has positive probability. 

This definition is adapted from the usual notion of ergodicity (cf Breiman 
(1969)) that a statistical average will converge to the true population mean as size 
increases. Condition 1 ensures large-sample convergence. Condition 2 ensures that 
convergence encompasses the entire universe of possibilities. We shall see an ex-
ample later in Section 4. 

Once again, let n denote total voter population size and denote P elements as 
( )n
ijp . Under ergodicity, we will have independent voter multinomial trials by can-

didate and we will have ( ) ( )0,1n
ij ijp θ→ ∈  as n →∞  by the Law of Large Num-

bers. We might then ask how large the population should be to ensure a certain 
level of statistical precision in our estimates. The rows of P are interrelated, so we 
will focus on any particular row. Goodman (1965) derived simultaneous large- 
sample confidence intervals of the form ( ) ( )1θ θ θ− ≤ −n

ij ij ij ijp Q n  with con-
fidence level 1 α−  and where Q is the upper ( ) 100k thα ×  percentile of the 
chi-square distribution with one degree of freedom. If, for instance, 0.05α =  (to 
achieve 95% confidence) and 4k = , then 6.238533Q = . 

Once an election is run, we know the ( )n
ijp  so we can solve the quadratic eq-

uation ( )( ) ( )2
1θ θ θ− = −n

ij ij ij ijp Q n  for upper and lower confidence limits 
,ij ijθ θ+ −  or we may simply estimate ijθ  by ( )n

ijp  and obtain confidence limits  
( ) ( )( )1± −n n
ij ijQ p p n . Before an election is run, we have no estimates, but we 

can use conservative limits with specified precision to compute required voter 
population size. Since ( )1θ θ−  is maximized at 1 2θ = , we can examine a 

conservative solution to 
4
Q
n

δ =  or 24
Qn
δ

=  where precision δ  is stipulated 

and we solve for population size n . For instance, if 0.05α = , 4k = , and 
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0.04δ = , then 975n =  is the required voter population size. Even for a purely 
ergodic voter population, we may need significant voter population size to ensure 
a reasonable degree of statistical precision. 

We are not asserting that all voter populations are ergodic. In reality, voter 
populations are probably some mix of hidebound and random rankings. 
Moreover, we are not asserting that rank-choice voting should be avoided for 
small voter populations, only that we acknowledge pitfalls and strive for ade-
quate population size (and randomization) when possible. In the next section, 
we examine these issues further in the context of an ergodic simulation model. 

4. Ergodic Simulation Model 

Our simulation randomizes independent and identically distributed voters se-
quentially with a specified starting random number seed. We first randomize a 
voting bloc (tendency), followed by 4 ranks according to first-place candidate 
rank probabilities (without replacement) to generate each voter’s candidate rank 
permutation. We then aggregate the voting profile and compute winners for 
Condorcet, Plurality, and Borda variations. 

If we denote the first column of Table 3 as v and the remaining 4×4 square 
matrix as R, then the ( )T 0.30,0.29,0.21,0.20v R =  vector represents the uncon-
ditional first-place candidate rank probabilities for comparison to the first col-
umn of the P-matrix simulation results. We designed inputs so that candidates 
1 and 2 had close unconditional first-place probabilities while the last two 
candidates were more “spoilers.” Despite all this machinery, the simulation is 
ergodic with independent multinomial trials summarized in the voting profile, 
the C-matrix, and the P-matrix.  

Table 4 results were generated by the SIMULATION function in the Appendix. 
For only 10 voters, there is no Condorcet winner and all Borda variations are 
consistent with the Plurality winner, candidate 1. For 100 voters, the only dif-
ference is that Condorcet comes in, again with winning candidate 1. With 1,000 
voters and up, however, candidate 2 wins across the board except for Plurality. 
This shows that true voter preferences were obscured by noise for smaller popu-
lation sizes. 

All 24 = 4! possible rank permutations are represented Table 5, some more 
than others of course. This lends further credibility to the notion that we are 
capturing true social preference across voters. Table 6 is the P-matrix that drives 
the Plurality and Borda winners for a particular random number seed. 

We duplicated the simulation for other random number seeds and got differ-
ent results for smaller voter populations. For random number seed 17, candidate 
2 was the winner for all voting methods up through 10,000 votes. Only a tad 
above 11,000 votes did Plurality revert to candidate 1. For random number seed 
23, we got mixed results below 1,000 voters. Even at 1,000, the uniform winner 
was candidate 1. We had to get up to 1,900 voters and above to duplicate the 
1,000 voter pattern from Table 4. For random number seed 29, we had to get up 
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to 23,000 for Borda-Harmonic to switch from candidate 1 to 2. For an ergodic 
population, random noise declines naturally as size increases, but in close elec-
tions like this one, definitive results depend crucially on a large voter population. 

 
Table 3. Simulation inputs specified by the author to reflect a close election. 

Voting Bloc 
Probabilities 

Candidate First-Place Rank Probabilities 

1 2 3 4 

0.4 0.6 0.1 0.2 0.1 

0.3 0.1 0.6 0.2 0.1 

0.2 0.1 0.2 0.1 0.6 

0.1 0.1 0.3 0.5 0.1 

 
Table 4. Simulated winning candidates for random number seed 7. Note the transition at 
1,000 voters. 

Voting Method 
Number of Voters 

10 100 1,000 10,000 

Condorcet None 1 2 2 

Plurality 1 1 1 1 

Borda-Arithmetic 1 1 2 2 

Borda-Geometric 1 1 2 2 

Borda-Harmonic 1 1 2 2 

Borda-RMS 1 1 2 2 

 
Table 5. Simulated voting profile for 1,000 voters and random number seed 7. 

 
Ranks 

Votes 1 2 3 4 

56 1 2 3 4 

39 1 2 4 3 

66 1 3 2 4 

80 1 3 4 2 

26 1 4 2 3 

42 1 4 3 2 

44 2 1 3 4 
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Continued 

35 2 1 4 3 

62 2 3 1 4 

62 2 3 4 1 

43 2 4 1 3 

51 2 4 3 1 

35 3 1 2 4 

42 3 1 4 2 

44 3 2 1 4 

39 3 2 4 1 

15 3 4 1 2 

21 3 4 2 1 

28 4 1 2 3 

38 4 1 3 2 

42 4 2 1 3 

44 4 2 3 1 

13 4 3 1 2 

33 4 3 2 1 

 
Table 6. Simulated P-matrix for 1,000 voters and random number seed 7. Note that the 
first column is reasonably close to the stipulated candidate first-place unconditional rank 
probabilities. 

 
Ranks 

Candidates 1 2 3 4 

1 0.309 0.222 0.219 0.250 

2 0.297 0.264 0.209 0.230 

3 0.196 0.316 0.275 0.213 

4 0.198 0.198 0.297 0.307 

5. Summary & Conclusion 

We have introduced a family of weighted-mean Borda Count variations for 
comparison to Condorcet and Plurality voting methods. We also introduced the 
notion of an ergodic voter population and discussed the importance of voter 
population size in that context, together with a statistical confidence interval ap-
proach to estimating requisite size. Via simulation, we demonstrated that ergod-
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ic population size is crucial in terms of voting method consistency and elicita-
tion of overall voter/social preference, particularly when an election is likely to 
be plurality-wise close. 

As in normal statistical inference, we should strive, when possible, for voter 
populations that are sufficiently large and randomized to ensure that election 
results reflect true voter/social preference. We acknowledge that we can’t always 
achieve these ideals, but we should always be cognizant of inferential pitfalls 
when they are absent. As we have seen, principal voting methods, other than 
Plurality, tend to converge for large, ergodic voting populations. There is un-
doubtedly opportunity for future research on this interplay between voting me-
thod and voter population composition and size. 
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Appendix. R Scripts/Functions 

Our analytical and simulation functions are delineated within R-scripts. Once 
those scripts are loaded into an R workspace, either manually or via the source 
function, they can be run repeatedly for different inputs and parameters. More-
over, the entire workspace can be saved for repeated use.  
 
CONDORCET <- function(M){ 
# Script CONDORCET.R 
# Produces a Condorcet winner (if available, else 0) from voting profile matrix 
M 
v <- M[,1] # Vote vector 
sv<- sum(v) # Total votes 
R <- M[,-1] # Candidate rank permutations 
n <- length(v) 
k <- dim(R)[2] # Number of candidates and positions 
# Tally of pairwise rank orderings 
C <- matrix(0,nrow=k,ncol=k) 
for (i in 1:n){C <- C + v[i]*outer(order(R[i,]),order(R[i,]),"<")} 
# Determine which (if any) candidate wins all pairwise contests 
t <- NULL 
for (i in 1:k){t <- c(t,min(C[i,i!=(1:k)]))} 
# Winner must achieve majority against every rival 
ifelse(max(t) <= sv/2,0,which.max(t))} 
 
COUNT <- function(M){ 
# Script COUNT.R 
# Produces candidate by position square count matrix from voting profile matrix 
M 
v <- M[,1] # Vote vector 
R <- M[,-1] # Candidate rank permutations 
n <- length(v) 
k <- dim(R)[2] # Number of candidates and positions 
C <- matrix(0,nrow=k,ncol=k) 
for (i in 1:n){C <- C + v[i]*outer(1:k,R[i,],"==")} 
C} 
 
PLURALITY <- function(M){ 
# Script PLURALITY.R 
# Produces plurality scores and a winning candidate for voter profile matrix M 
# This is the familiar most-first-place votes method 
n <- sum(M[,1]) # Total votes 
k <- dim(M)[2]-1 # Number of candidates and ranks 
P <- COUNT(M)/n # Candidate-by-rank doubly stochastic matrix correspond-
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ing to M 
scores<- P%*%c(1,rep(0,(k-1))) # Only rank 1 votes are counted 
# Ignoring ties 
which.max(scores)} 
 
BORDA.ARITHMETIC <- function(M){ 
# Script BORDA_ARITHMETIC.R 
# Produces Borda Arithmetic scores and a winning candidate for voter profile 
matrix M 
# This is equivalent to the familiar Borda Count voting method 
n <- sum(M[,1]) # Total votes 
k <- dim(M)[2]-1 # Number of candidates and ranks 
P <- COUNT(M)/n # Candidate-by-rank doubly stochastic matrix correspond-
ing to M 
scores<- P%*%(1:k) # Weighted arithmetic mean rank by candidate 
# Ignoring ties 
which.min(scores)} 
 
BORDA.GEOMETRIC <- function(M){ 
# Script BORDA_GEOMETRIC.R 
# Produces Borda Geometric scores and a winning candidate for voter profile 
matrix M 
# This is the natural geometric mean companion to Borda Arithmetic 
n <- sum(M[,1]) # Total votes 
k <- dim(M)[2]-1 # Number of candidates and ranks 
P <- COUNT(M)/n # Candidate-by-rank doubly stochastic matrix correspond-
ing to M 
scores<- exp(P%*%log(1:k)) # Weighted geometric mean rank by candidate 
# Ignoring ties 
which.min(scores)} 
 
BORDA.HARMONIC <- function(M){ 
# Script BORDA_HARMONIC.R 
# Produces Borda Harmonic scores and a winning candidate for voter profile 
matrix M 
# This is the natural harmonic mean companion to Borda Arithmetic 
# This is equivalent to the familiar Dowdall/Nauru voting method 
n <- sum(M[,1]) # Total votes 
k <- dim(M)[2]-1 # Number of candidates and ranks 
P <- COUNT(M)/n # Candidate-by-rank doubly stochastic matrix correspond-
ing to M 
scores<- 1/(P%*%(1/(1:k))) # Weighted harmonic mean rank by candidate 
# Ignoring ties 
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which.min(scores)} 
 
BORDA.RMS <- function(M){ 
# Script BORDA_RMS.R 
# Produces Borda Root-Mean-Square scores and a winning candidate for voter 
profile matrix M 
# This is the natural RMS companion to Borda Arithmetic 
n <- sum(M[,1]) # Total votes 
k <- dim(M)[2]-1 # Number of candidates and ranks 
P <- COUNT(M)/n # Candidate-by-rank doubly stochastic matrix correspond-
ing to M 
scores<- sqrt(P%*%(1:k)^2) # Weighted root mean square rank by candidate 
# Ignoring ties 
which.min(scores)} 
 
PROFILE2.1 <- function(){ 
# Script PROFILE21.R 
# Produces and stores transposed version of voter profile in Robinson & Ullman, 
Problem 2.1 
# Designates winners for different voting methods 
v <- c(4,3,2,1,1) 
R <- c(1,3,4,2,5,2,5,4,3,1,3,2,4,1,5,4,2,5,3,1,5,4,2,1,3) 
R <- matrix(R,nrow=5,ncol=5) 
M <- t(rbind(v,R)) 
print("Voting Profile") 
print(M) 
#write.table(M,file="c:/VOTING/PROFILE21.csv",col.names=FALSE,row.names
=FALSE,sep=",") 
source("c:/VOTING/CONDORCET.R") 
source("c:/VOTING/COUNT.R") 
source("c:/VOTING/PLURALITY.R") 
source("c:/VOTING/BORDA_RMS.R") 
source("c:/VOTING/BORDA_ARITHMETIC.R") 
source("c:/VOTING/BORDA_GEOMETRIC.R") 
source("c:/VOTING/BORDA_HARMONIC.R") 
print("C-Matrix") 
print(COUNT(M)) 
P <- COUNT(M)/11 
print("P-Matrix") 
print(P) 
print(paste0("CONDORCET WINNER = ",CONDORCET(M))) 
print(paste0("PLURALITY WINNER = ",PLURALITY(M))) 
print(paste0("BORDA-ARITHMETIC WINNER =  
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",BORDA.ARITHMETIC(M))) 
print(paste0("BORDA-GEOMETRIC WINNER = ",BORDA.GEOMETRIC(M))) 
print(paste0("BORDA-HARMONIC WINNER = ",BORDA.HARMONIC(M))) 
print(paste0("BORDA-RMS WINNER = ",BORDA.RMS(M)))} 
 
SIMULATION <- function(NUM,SEED){ 
# Script SIMULATION.R 
# Produces and stores simulated voter profile 
# Designates winners for different voting methods 
# NUM = total number of independent voters 
# SEED = random number seed for reproducible results 
# Simulation for independent voters with probabilistic voting bloc tendencies 
# All candidate rank permutations are possible 
library(dplyr) 
# Randomized voting blocs and independent voter rank permutations within 
blocs 
BLOC_PROBS <- c(.4,.3,.2,.1) # Voting bloc probabilities 
# Candidate first-place rank probabilities by voting bloc 
# Used also for subsequent rankings 
RANK_PROBS <- c(.6,.1,.2,.1) # Candidate rank probs for Bloc 1 
RANK_PROBS <- rbind(RANK_PROBS,c(.1,.6,.2,.1)) # for Bloc 2 
RANK_PROBS <- rbind(RANK_PROBS,c(.1,.2,.1,.6)) # for Bloc 3 
RANK_PROBS <- rbind(RANK_PROBS,c(.1,.3,.5,.1)) # for Bloc 4 
set.seed(SEED) # Set random number seed 
# Simulated independent voter rank permutations 
M <- NULL 
for (i in 1:NUM){ 
a <- sample.int(4,size=1,replace=FALSE,prob=BLOC_PROBS) 
b <- sample.int(4,size=4,replace=FALSE,prob=RANK_PROBS[a,]) 
M <- rbind(M,b)} 
# Aggregation into candidate rank permutation counts 
df<- data.frame(M) 
A <- data.matrix(df %>% group_by_all() %>% count) 
M <- cbind(A[,5],A[,-5]) 
print("Simulation Voting Profile") 
print(M) 
# 
write.table(M,file="c:/VOTING/SIM_PROFILE.csv",col.names=FALSE,row.nam
es=FALSE,sep=",") 
source("c:/VOTING/CONDORCET.R") 
source("c:/VOTING/COUNT.R") 
source("c:/VOTING/PLURALITY.R") 
source("c:/VOTING/BORDA_RMS.R") 
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source("c:/VOTING/BORDA_ARITHMETIC.R") 
source("c:/VOTING/BORDA_GEOMETRIC.R") 
source("c:/VOTING/BORDA_HARMONIC.R") 
print("Unconditional First-Place Probabilties") 
print(BLOC_PROBS%*%RANK_PROBS) 
print("C-Matrix") 
print(COUNT(M)) 
P <- COUNT(M)/NUM 
print("P-Matrix") 
print(P) 
# 
write.table(P,file="c:/VOTING/SIM_P_MATRIX.csv",col.names=FALSE,row.na
mes=FALSE,sep=",") 
print(paste0("CONDORCET WINNER = ",CONDORCET(M))) 
print(paste0("PLURALITY WINNER = ",PLURALITY(M))) 
print(paste0("BORDA-ARITHMETIC WINNER = ",BORDA.ARITHMETIC(M))) 
print(paste0("BORDA-GEOMETRIC WINNER = ",BORDA.GEOMETRIC(M))) 
print(paste0("BORDA-HARMONIC WINNER = ",BORDA.HARMONIC(M))) 
print(paste0("BORDA-RMS WINNER = ",BORDA.RMS(M)))} 
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